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Abstract

We give a description of a behavioral specification in terms of in-
finite sequences. This description allows mathematically precise defi-
nitions of needed notions and shows the way to strict proofs of their
properties. We propose a handful of such notions and give an ove-
rview of their properties. In a part of these notes we show the links
with existing theories and point out possible further development of
our approach.

1 Introduction

In this note we want to give a mathematical model to the system behaviour
paradigm. For motivation, general introduction and specific examples we refer
to the report [Tur94] which we assume is known to the reader. Here we remind
only the general setting.

The system behaviour is defined by actions, which are executed by some
agents. An action may be started if some condition (called a preguard) is
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2 1 INTRODUCTION

satisfied. Once started the agent acts independently of the system. We as-
sume that each action terminates. Upon a termination of an action another
condition (a postguard) is checked and if it is satisfied the result of the action
is implemented to the system, otherwise it is abandoned.

Now we outline the model.

" In order to settle the notion of the system we introduce the set of po-
ssible states called a world. The behaviour of the system is a sequence
of states, so we assume that the changes occur discretely (i.e. not con-
tinuously). We shall say earlier or later (i.e. introducing time) in the
sense of the precedence in such a sequence. The time is discrete and is
modeled by natural (or entire) numbers.

" Actions are transformations of the world into itself. So we may say
that an action changes a state, meaning that the next element of the
sequence is an image of the previous one under the action.

"* In fact an action is a rule how to change the state when the action is
terminated given a state when it is initiated. Therefore we may speak
about tasks. A task is a set of functions from world into itself parame-
terized by a subset of the world. This subset is a preguard of a task
(and of the function). A postguard is a subset of the world outside of
which the function is an identity (the action fails to change the state).

" We are interested in the behaviour of the system, so we may want to
decide which collections of tasks may give same (possible) sequences.
This is done by introducing some equivalence relations between the
tasks.

" On the other hand we are interested in some extremal set of tasks (mi-
nimal or maximal with respect to some criterion but still within the
equivalence class). This may be done by reducing the tasks by rejec-
ting the subtasks which are idle (i.e. acts as identities on the world).
Similarly we may operate on the pre- and post-guard.

"* In order to describe the behaviour completely we want (or have) to
know what are the actions which may change the state at given moment
(so called pending actions). To do this we introduce an abstract set
called the set of agents and at each moment we distribute the actions
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among agents. Therefore the evolution of the system is a sequence of
pairs consisting of a state and a distribution of actions.

" We may impose some restrictions on the distribution of the actions.
For example we may want that an action persists until it is terminated
i.e. until there was an attempt to implement it in the system. That
means that for a given agent an action assigned to it at some moment
(initiated) does not change in following moments until the system is
changed by this action.

"* If we are interested in all possible behaviors of the system then we
may consider all possible sequences which are allowed by the rules of
distribution and the rules of changing the states.

"* There is a natural dynamic in the set of sequences, which is given
by a shift. This corresponds to the evolution in time. If we say that
some evolution is (time-)invariant we mean that some subset of such a
collection is invariant under the shift.

"• In the set of sequences we may introduce distance and probability based
on distance and probability in the world. Thus we may speak of conver-
gence, limits and attractors in the topological and measure-theoretical
senses.

"• For a finite world the theory of such sequences is called the theory of
subshifts of finite type. In this theory one may describe such physical
notions as energy, pressure or entropy.

In the following sections we shall present 6 model in full details. First we
introduce the notions and explain them on some simple examples. Then
we list (without proof) some properties. Some of them are straightforward
consequences of definitions, other are easy to prove, but some of them are still

rather conjectures and the proofs do not seem evident. Finally we state some
notions from the subshift of finite type theory, and state possible directions
worth (in our opinion) further investigations.



4 2 TASKS & AGENCIES

2 Tasks & Agencies

In this section we give an exact description of the behavioral specification in
terms of an evolution in some phase space. Given a state (element of the world
or the phase space) its possible evolutions are represented by sequences of the
states (here indices are natural numbers and play the role of the time). Not all
sequences are allowed, the limitations (or rules of the evolution) are given by
a set of transformations called tasks. Saying that at time j' a transformation
changes a state a into b we mean that for a given sequence (wj) we have
wj, = a and wji+l = b.

For each element of the sequence (or state at given moment of time) there
are several pending actions or available transformations which may change
the state i.e. which describe the rule binding the actual and next elements
of the sequence. At the next element of the sequence there is also some new
collection of pending action, which is a function valued in the set of tasks.

A step in the evolution (a shift in the sequence by one) consists in chan-
ging the state by one pending action (evolution of states) and choosing a new
collection of pending, actions, which differs form the old one in a specific way

(evolution of actions).

Thus to describe the (possible) evolution we have to consider both states
and pending actions and the rules of steps.

There are several conditions (pre- and post-guards) which limit the possi-
ble actions of tasks and the tasks themselves.

We are interested in the evolution of the world, i.e. given a state we
observe its changes under some action. We do not assume that this evolution
is determined by the initial state, therefore we have to consider many possible
developments.

We allow one of several actions to take place. A state may be transformed
by some action in progress, and new actions may be initiated.

The state may be changed by one of the previously initiated action, and
the change happens if the state belongs to the postguard condition of the
action. If the postguard conditions is not fulfilled there is no transformation
(the transformation is an identity). On the other hand for each state there
is a number of actions which may start (for any of these actions our state
belongs to (or fulfills) the preguard condition of the action). By this we mean
that if the distribution of pending actions for the next step differs from the
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previous one some old pending action may be lost, but new ones must have
preguards fulfilled by the new state.

2.1 The notions

The model
We denote by .F(A, B) the set 13 A of functions from A to B.

"* Let W 54 0 be the world.

Tasks

" We say that ZpQ C F(P x W, 1V) is a task with a preguard P C 14' and
a postguard Q C W if for any function Z E ZpQ we have Z(p, w) = w
for any w E 14' \ Q and p C P. Elements Z from the task Z will be
called subtasks.

" For any Z E Zp,Q and p E P we have a map Zp : --+ )4W given by
w '-+ Z(p, w) which we shall call an action anchored at p.

"* We say that the action Zp is idle if Zp = id.
A subtask is idle if all actions Zp are idle for p E P.
A task is idle if all its subtasks are idle, i.e. Zp = id on W for all Z
from the task and all p from the preguard.

" We say that a task is busy if there for any Z E Z exists a p E P such
that Zp $ id (it has no idle subtasks).-

" We say that a task is tight if for any p in its preguard there exists a Z
from the task such that Z. $ id. (All elements from the preguard are
important).

" We say that a task is exhausting if for any q E Q there exists a Z E Z
and p C P such that Zp(q) $ q.

" We say that a task is demanding if for any Z C Z and q E Q there
exists a p E P such that Zp(q) $ q.
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Reducts

"* A busy reduct of the task Z is a task Z' such that P' = P, Q' = Q and
Z E Z' iff Z E Z and Z is non-idle (i.e. Zp -• id for some p G P).

" A tight reduct of the task Z is a task Z' such that Q' = Q, p E P' iff
p E P and Zp • id for some Z. Moreover Z' E Z' iff there is a Z E Z
such that Z; = Zp for any p E P' and Zp id for some p.

"* An exhausting reduct of the task Z is a task Z' such that P' = P and
q E Q' iff q G Q and Zp(q) # q for some p E P and Z E Z. Moreover
Z' E Z' iff there exists a non-idle Z E Z (i.e. Zp -$ id for some p G P)
such that Z' = Z for each p E P.

" A demanding reduct of the task Z is a task Z' such that P' = P and
q E Q' iff q E Q and for each non-idle Z E Z there exits a p E P such
that Zp(q) h q. Moreover Z' E Z' iff Z' = Z for some non-idle Z E Z.

Projects

"* A project P is a family of tasks

'P = U zi U zp,
iEI iEI

"* A project defines a set of available actions Q C Yr'(W, W) given by

SCE Q iff there exist i C I, Z E Zi C P, and p E Pi such that = Zp.

" A project is complete if Uie1 Pi = W. A non-complete project may be
completed by adding an (idle) task Z0 with one subtask Z0 and with
Po = W \ UiE1 Pi and Q0 = 0.

"* A complete(d) project is busy (tight) if there is at most one idle task,
which is of cardinality one, sudh that its preguard is disjoint with the
preguards of other tasks which all are busy (tight).

" A reduct of a (complete-d) project is a (complete-d) project such that
all its tasks but (maybe) one, which is idle and of cardinality one, are
reducts (of an appropriate type).
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Agencies and Managements

" Given a set A (called the agency or the set of agents) we define a ma-
nagement of a (complete-d) project P to be a set of functions M =

Y(A, Q).
Each element of this set may be thought of as a decision how to distri-
bute available actions from Q among the agents A E A.

"* For an infinite agency (with an infinite number of agents) we assume
always a infinite-to-one management, i.e. if a E M, and a(A0 ) = Z,
for some A0 E A then there are infinitely many agents A a(A) = Zp
(i.e. for any Zp the cardinality of a-'(Z.) is either zero or infinity).

" We are only interested in the cardinality of an agency, i.e. in the
number of agents. It is clear what is meant by larger or smaller agency.

Enterprises

" An enterprise S of an agency A realizing (or managing) a (complete-d)
project P is a (maximal) subset of £ C (W/ x M)K of sequences which
fulfills the condition stated below. First we explain the structure of an
enterprise.
If e C S, then e = (wj, j) 0 =. For any j E Y we have aj E M,
therefore for any A E A the function aj(A) E Q is an available map of
the form Zp for some i E I, Z E Zi C P and p E Pi. Hence an agent
may act on the world, W --+ W/, by w i-4 Z4(w) = Z(p,w), which we
may write w " a•j(A)(w).

The condition reads : For any j there exists an A0 E A such that

- wj+l = aj(Ao)(wj) and

- aj+,(A,) = Z,1 +, for some Z E 'P. (It means implicitly that wj+l
fulfills the preguard of Z E Z C P, this is always possible for
some 3, as the project was complete-d).

- Moreover if aj+1 (A) # aj(A) (for some A 5 A0 then aj+, (A) =

ZWI+, for some Z, i.e. new available actions assigned to the agents
at this moment must be anchored at wj+,.
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" We say that an enterprise is quiet if the distribution of non-idle activities
of agents aj+l does not differ too much from the distribution aj. By
this we mean that if wj+l = aj(A,)(wj) and A 5 A0 then if aj(A) 5 id
then aj+ 1(A) = aj(A).

A short way to say it is that at the moment j the change in the di-
stribution of available actions may occur only at idle actions and the
action which just took place. The management takes as little decision
as possible, summoning only agents which are not active and the agent
which just finished its job.

" We say that the enterprise is active if for any agent with an idle activity
aj(A) = id we have aj+1(A) is not idle if possible. By this we mean
that if wj+l belongs to a preguard Pi, whose task is not idle then

lj+1 (A) $ id for A E A.

Developments

" The projection of an enterprise on Wkr is called a development. D
{(Wj)jI0= ] e E S e = (wj,Oaj)j-0=} for some sequence of aj.

"* An element of a development (i.e. a sequence (wj)) is called a path.

"* Given the world )4V we say that the enterprise £ is wider than £' if
fD' cD.

" We say that

- a task Zp,Q is broader then Z•,,Q, if for any Z' E Z' and p E P'
such that Z• :/ id (Z' is not idle)we have p E P and there is a
Z E Z such that Zp = Z• on W,

- Z is an extension of Z' if PF C P and for any Z' E Z' such that
Z•, -$ id for some p' G P' (Z' is not idle) there exists a Z E Z
such that for any p E P' we have Z• = Zp,

- a project P is broader then 7P'

if for any non-idle Z' E Zh, C 1" there is a Z E Zi, C P such that
for any p E PIl we have either Zp = id or p E Pi2 and there is a
Z E Zi, such that Zp = Z• on W,
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- P is an extension of 1' if for any Z' E Z•i C P', Z' non-idle there
is a Z C Zi, C P such that PJ C P, and for any p E P! we have
zp = zP1.

The notion being broader means that for any available non-idle action
generated by one task there is the same available action generated by
the other one. In the extension all non-idle elements from one task
have their counterparts in the second one. Shortly in the second case
we require that there is a correspondence between non-idle elements of
the tasks, while in the first one the correspondence occurs only at the
level of available actions.

" We say that an enterprise E is developing faster than S' if for any
sequence (w') E D' and j' > 0 there exists a sequence (w) E D and
j <j' such that for any I > 0 we have Wy,+ = wj+1 . That means that
any subsequence from D' appears sooner in D.

" We use the word eventually in front of bigger or quicker if there exists
an N such that these relations are restricted for the all sequences after
rejecting first N elements.

" The subset W C W is N-invariant in the development D if for any
(w) (E D such that if for someF wj, wj+l..,Wj+N E W then wj E W
for all j > j'.

" A shift r is a transformation on the set of sequences defined by r(wj) =

wj+l, i.e. the image of a sequence under shift is the sequence with
truncated first element.

"* The subset D C D is shift-invariant if (wj)•=o0 E D then (wj+l)j-= E D.

"* A strict attractor is a shift-invariant set M such that its bassin B =

Un 0 i-:M ý M, and it is minimal (any invariant subset of M has
smaller bassin).

Irreducibility

"• We say that the task Z is decomposed into tasks Z' and Z" if P is
a disjoint union P' U P" and for each Z E Z there are Z' E Z' and
Z" E Z" such that Zp = Z• if p P' and Zp = ZP' if p E P". The
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decomposition is not trivial if both sets P' and P" are non-empty and
both tasks Z' and 3" are not idle.

" We say that a project may be decomposed if there is a decomposition
of W into two (or more) non-empty disjoint subsets W' U W" and each
task of the project may be decomposed by P n/ W' and P fn W" and at
least one of these decomposition is not trivial.

" A project is irreducible if there is no decomposition of the project with
the property Z(P n W', WI') C W' and Z(P nl W", W1V") C W" for all
ZE7.

Simplification

"* We say that a sequence is simple if the equality wj = wj+l for some j
implies wi = wj for all i > j.

" A simplification of a sequence is its maximal simple subsequence. We
may think of it as of a map s : War - WAr such s(wj) = wk, with
k0 = 0 and if kI3 is defined then either kj+l = i is minimal i > kj such
that wi =A wk. or if wi = wj for all i > j then kj+l = kj + 1.

"* We say that two sequences are simply the same if they have same sim-
plifications

Example 2.1 Consider the world W = {0, 1 }N for some N E A(. Let 7 =
Ui=o N+l{Z} where for i =1,...,N we have Pi ={w E W : w = 0 =
{w E W : wj = 1,j < i} and Zi(p,w)j = 1 for j < i and Zi(p,w)j = 0 for
j> i. Fori = O we set Po = {(1,...,1)}, Qo= W and Zo(p,w) = (0,...,0).
For i = N + 1 we set the preguard PN+I = W \ Uz!oZ&(-, W), postguard
Q = IN and Z(p, w) = (0,... ,0). We complete the project in a standard
way.

This project is ending in idle actions if the agency has cardinality smaller
than N.

Example 2.2 Let VV= {0,1,2,3}. Fori = 1,2 letZi= {Zi} with Zi(p,w)
0 forw = O,i, Zi(p,3) = i and Zi(p,3-i) = i. If Qi = {0} then the taskZi is
idle. If 0 V Qi $ 0 then the task is tight. If the project consists only of one of
these tasks then it lands at 0 after at most three steps. If the project includes
both of them then eventually periodic sequences as 312121212 ... appear in
the development.
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2.2 Properties

"* The situation when a task is neither idle nor busy is not excluded.

"* ZO,Q = 0 by definition.

" ZpO is idle.

"* Being broader is reflexive and transitive.

"* Being extension is reflexive and transitive.

"* Being an extension implies being broader.

"• The relation Z is broader than Z' and Z' is broader than Z is an
equivalence relation between tasks in the same world.

* For any non-idle task there is an equivalent (in the sense of broader)
busy, tight task.

"* The relation of being mutual extensions is an equivalence.

"* For any non-idle ask there is an equivalent (in the sense of extension)
busy task.

"* Similarly with projects.

"* Being tight and being busy are extremal conditions on the preguard.

"* Being exhausting and being demanding are extremal conditions on the
postguard.

"* Tasks are equivalent to their reducts.

"* Consecutively taking reducts is commutative for different types and
idempotent for the same type.

"* Reducts are extremal with respect to their type (e.g. a tight reduct
is minimal (with no subtask and no task with smaller preguard) tight
task equivalent (and therefore satisfying a maximality condition) to the
task.



12 3 SUBSHIFTS OF FINITE TYPE

"* Equivalent projects realized with the agencies of the same number of
agents have same developments.

" Bigger agency realizes bigger development of the same project. (Both
possibility strictly and not-smaller are not a priori excluded).

" All infinite agencies realize same development of a given project.

"* For finite agencies the development depends only on the cardinality of
the agency (i.e. on the number of agents).

"* For any path wj E D9oo of a development realized by a infinite agency
there is a finite agency realizing the same path.

"* If the project is not irreducible then there is a decomposition of its
developments.

3 Subshifts of finite type

If we suppose that the world )W is finite and the project P is finite then we
may use the modeling via the theory of subshifts of finite type.

Let AC be a finite set and X = IZN be the set of (one-sided) sequences
valued in /V. The dynamical system (X, a) is called a full shift, where the shift

acts on the sequence (an) by skipping its first element, a((a.)- o) = (a')-0

with a' = an+.

Now let T (t4,n) be a k x k matrix, k = cardAZ, and tm,n E {,O1}.
We define a subspace XT C X by the condition (an) E XT iff for any n
tan,an+1 = 1. We can describe the sequences from XT as the sequences for
which the possible successors a' = an+l E AZ (in the sequence) of the element
a = an E kA are described by the permission matrix T. The matrix is called
irreducible if there is some m such that T m has all entries strictly positive. It
means that after m steps we may go from any state to any state. The entries
of T", which are obviously natural numbers, represent the number of paths
joining two states in m steps.

Example 3.1 Let IZ = {1, 2} and

T: 1 0
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then X is the set of all sequences of I and 2 and XT are the sequences with
no two consecutive 2's.

If/ = {1,2,3} and

T=( 110)

then XT is the set of all sequences of 1,2 and 3 where 3 must be followed by
2 and preceded (if not staying at the beginning of the sequence) by 1.

The dynamical system (XT, a) is called the subshift of finite type. For more
information see [Bow75]. In this system the following notions are naturally
defined.

" The metric. Let d be the discrete metric on the set 1C. Then we
can define the metric d on X (and on XT as well) by d((an), (b•)) =
E d(an, b•)/2n. The balls consist of sequences with same values of in
given finite number of initial coordinates. Two sequences are close if
their sufficiently long initial parts are identical.

" The topology is the metric topology in the above sense. The base
of neighbourhoods are the so called cylinders, i.e. the sets with fixed
values on some finite coordinates. The cylinders are the unions of finite
number of balls.

" The measure. Let (pi)ý =1 be a probability distribution on the set 1C.
We may define the probability of the cylinder by the product of pi's
corresponding to the fixed values defining the cylinder. This definition
expands (via Kolmogorov's theorem) to the measure on Borel sets in
X. The measure on XT may be (with some care) derived by taking the
conditional measure.

We want to describe the evolution of a system with acting agents as a sequ-
ence of states. One sequence represents one possible development of a system.
The state is a configuration of the system including the real world and the
agents with their private worlds, flags of actual activities and preguard and
postguard information.

The idea borrowed from the subshifts of finite time is to reduce the space
of all sequences of configurations (states) to the sequences for which only
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some successors of a state are possible. This corresponds on one hand to
the conditions making actions acceptable and on the other to the permission
matrix. We shall be more specific in the next section.

Let us now consider in detail an easy example. The goal of this example
is to present a system small enough to make the full description readable but
which has the features leading to more complicated applications as a system
with a flip-flop and a counter controlled by several agents.

Example 3.2 (An agent copies the flip-flop into a register) Consider
the system S with a flip-flop x and a'register r. The flip-flop changes the va-
lue from 0 to 1 and from 1 to 0 independently from the rest of the system.
The aim of the acting agent A is to put in r the value of x in case when the
actual state of the flip-flop is different from the one remembered by the agent.
The agent has two registers : a working one w and an activity one a. E0

Let k be the set of following vectors (S, A) = ((x, r), (w, a)) with x, r, w, a E
{0, 1}. The cardinality of iC is 2' = 16. A 0-1 matrix T = (tyv,y) describes
the admissible followers V' E IC of a state V in the sequence of the evolution
of the system (S, A).

Instead of writing the 16 x 16 matrix T we shall describe the permissions,
the entry of the matrix is 1 iff the following conditions are fulfilled :

1. ((x, r), A) can follow and be followed by ((x', r), A) for any choice of x,
x' and r, A, i.e. t((x,r),A),((x,,r),A) = 1. This is the independence of the
flip-flop.

2. The value of w is changed into the value of x when some condition
G(S) (a preguard from [Tur94]) is fulfilled, then also a changes from 0
to 1 (the agent becomes active). In other words under G(S) for V =
((x, r), (w, 0)) and V'= ((x', r), (x, 1)) we have tyv, = 1, for any x, x,
w and r. In our case G is fulfilled by any state S (there is no preguard
condition).

3. When G(S) is fulfilled and a = 0 then the only possible follower of V
is V with a= 1 and w' = x.

4. a may change from 1 to 0 only if w changes to w' = f(w) and y
changes to F(S, A). f is a predefined function depended of the aim of
the agent, in our case f(w) = w, and F(S, A) = r or f(w) depending



15

if some condition (a postguard from [Tur94]) is fulfilled. In our case
F(S,A) = f(w) if f(w) = w € x and y when f(w) = w = x. That
means that tv, = 1 for

(a) V = ((0, r), (1, 1)) and V' = ((x', 1), (1, 0)) or

(b) V = ((0, r),(0,1)) and V' = ((x', r), (1, 0)) or

(c) V = ((1, r), (1,1)) and V' = ((x', r), (1, 0)) or

(d) V = ((1, r), (0, 1)) and V' = ((x', 0), (0, 0))

5. We do not permit the register r to change in a different way than by
converting it into the value of w as described above at (4).

6. We do no say what happens to w when a stays equal to 0 (this situation
is in our case excluded by (2,3)), but when a, a' = 1 w cannot change.
When a = 1 and a' = 0 there is no condition on w.

Here is the whole permission matrix T. We represent the state by the
hex-digit equal to x + 2r + 4w + 8a. The double lines separates different
activities (a = 0 and a = 1) and single lines different w. We mark only the
entries equal to 1. Repeated double ones say that the flip-flop may change
its state in an independent way.

The first quadrant (a = 0, a' = 0 of the matrix is empty because in
our example the system must change from idle to active (condition 3) in
particular because there is no restriction given by a preguard, as G(S) is
always fulfilled. The second quadrant (a = 0, a' = 1) shows the copying of x
into w' while leaving r. The third one (a = 1, a' = 0) shows what happens
when the agent terminated its job. There are two pairs of entries in each row
due to the fact that the new value of w' is not determined. The register r
changes only in rows B and D. The fourth quadrant shows that (up to the
flip-flop changes) the system stays identical when the agent is busy.

Let us take now the set X of all (one-sided) sequences of symbols 0... F,
and XT the subshift derived from X with the matrix T. The sequences from
XT represent all possible evolutions of the system which fulfill the rules of
permission. We can now compare two evolutions, try to find an invariant
measure then attractors (in both topological and metrical sense).
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V\V' 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 11
1 1 1
2 1 1
3 11
4 11
5 11
6 11
7 11
8 1 1 1 1 1 1
9 1 1 1 1 1 1
A 1 1 1 1 1 1
B 1 1 1 1 1 1
C 1 1 1 1 1 1
D 1 1 1 1 1 1
E 1 1 1 1 1 1
F 1 1 1 1 1 1

Table 1: The permission matrix for a system copying a flip-flop. Explanation
in the text.
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4 The thermodynamics

There is already a very well developed theory of subshift of finite type. In
this section we point out how the notions of thermodynamics may be used
in the investigations of dynamical systems consisting of sets of sequences as
the phase space and a shift as the transformation. This is based on the books
[Bow75, Rue78].

4.1 Probability measures, introductory notions.

Let (X, B, y) be a probability space, i.e. B is a ar-field of subsets of X (called
measurable sets) and y is a nonnegative measure on B with 1 (X) = 1. Usually
we work with a fixed transformation of the space. We want this transforma-
tion to preserve the measure (or the measure to be invariant with respect to
the transformation).

An automorphism is a measurable bijection T : X -* X (i.e. T-'E E B
iff E E B) for which p(T-1E) = p(E), E E B. An endomorphism of a
probability space is a measurable transformation such that I(T-'E) = p(E),
EEB.

In case when X is a compact space and T is a homeomorphism (or a con-
tinuous map) one usually sets B to be the family of Borel sets. The measure
is called then a Borel probability measure. Let M(X) be the set of Borel
probability measures and MT(X) its subset of measures which are invariant
with respect to T. We have by definition y E MT(X) iff p o T` = pt. For
any p E M(X) we can define T*(p,) = y o T-1.

Real-valued continuous functions C(X) on the compact metric space
X form a Banach space with the norm IIfll = sup,,x If(x)l. The weak
*-topology on the space C(X)* (i.e. the space of continuous linear func-

tionals a : C(X) -* R) is generated by the sets of the form U(f, e, a,) =
{a E C(X)* : Ia(f) - a,0(f)l < c} with f E C(X), c > 0, a• E C(X)*.

Riesz Representation. For each p E M(X) define a,, by a..u(f) =
f fdla. Then yi -+ a,, is a bijection between M(X) and {a E C(X)*
a(1) = 1 and a(f) > Oforf > 0}. We identify a,, and p. We call the weak
topology on M(X) the topology induced by this identification from the weak
*-topology on C(X)*.

We have following properties of the spaces M(X) and MT(X).
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" M(X) is a compact, convex, metrizable space.
This follows from the fact that the weak topology on M(X) is equiva-
lent with the topology induced by the metric d(1t, v) = En¾= If f. dy -
f f,, dvj• 1jfn-'/2n, where (fn) is a dense subset of C(X).

" MT(X) is a nonempty closed set of M(X).
T* is a homeomorphism of M(X) and MT(X) = {l E M(X)
T*() = pl}. For yt E M(X) let v be an accumulation point from
I En =(T, )ky. Then v is T invariant.
n =

* itGMT(X) iff f(f o T) d - f f dit for all f E C(X).
This is Riesz representation theorem applied to T*it = y.

Suppose that A = (aij) is a n x n matrix of nonnegative integers. We
may consider a (closed) subset FNA (resp. E+) of E (resp. Y,+) consisting of
the sequences x such that a.kX+, > 0 for any k. We may assume that A is

such that for any k E F there is an x E E(+) with x0 = k, otherwise one can
take an m x m matrix B with m <'n and N(A+) = F(+). These sets with a

shift transformations are subshifts of finite type.
Let us state the following result. The shift 7 is topologically mixing (i.e. for

any U, V nonempty open subsets of E(A+) there is an N such that rMunv : 0
for M > N) iff AM > 0 (i.e. all entries are strictly positive) for some M.

In the set C(E(+)) there is a special of continuous real-valued functions on

E(+) where is a special family FA of functions with positive H5lder exponent
with respect to the metric d.. 0 C .FA iff vark(O) := sup{10(x) - O(y):
xi = yiforlil < k} < bck, for some b> 0 and a E (0, 1).

4.2 Gibbs measures

Suppose that a 'physical system' has possible states 1,.. n and the energies
of these states are Ej,. . , En. Suppose further that this system is not isolated
but in permanent contact with a 'large heat source' which remains at the
constant temperature T. Therefore the total energy of the system is not
fixed and any state of the system may actually occur. There is a following
'physical' fact. The probability pj that the system is at state j is given by
Gibbs distribution pj = exp(-lEj))/ý Ej exp(-fPEi), with /3 = 1/kT, k a
'physical' constant.
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This is connected to the following 'mathematical' fact. Given real num-
bers al,...,an the function F(pl,...,pn) = Zi(ai - logpi)pi attains in
the simplex Eipi = 1, p >- 0 a maximum log Ej exp(ai) at the point
pj = exp(aj)/ E> exp(az). The quantity h(pj,...,pn) = Ej -pi logpi is cal-
led the entropy of the distribution (pi). We assume 0 log 0 = 0 for x log x to
be continuous at x = 0.

If we put ai = -#3Ei then we have E aipi = -#3E with average energy
E and the Gibbs distribution maximizes S - 3E, where S stays for entropy.
The minimized quantity P = E - kTS is called free energy. Therefore the
principle reads 'nature maximizes the entropy' when the energy is fixed but
'nature minimizes the free energy' when the energy is not fixed. One can
generalize such a distribution to the system EA.

Let 0 : EA -- R be H1lder continuous. Then there is a unique invariant
measure p C M(ZEA) for which one can find constants C1 , C2 and P such that
cl •5 j{y : yj = xj,j = 0,...,-m - 1}/exp(-Pm + Ej'o1 q o rJ(x)) < C2 .
One can call P = P(O) a pressure of 0. The exact definition of the pressure
is more complicated.

For such generalized 'Gibbs distribution' p one has the Variational Prin-
ciple. h(pi) + f qd/t = P(0).

The measure satisfying the above principle is called an equilibrium state.
In one-dimensional lattice the equilibrium states for H6lder continuous func-
tions are (unique) Gibbs distributions.

We can call 0 E C(X) observables, and p E M(X) states in the sense
that p (q) = f 0 dj is the average value of q'in the space.

The configurations (i.e. the sequences x C EA) can describe possible
evolutions of the system. The matrix A describes pre- and post-guards. If we
are interested in asymptotical behaviour of the limit sets we may define an
observable q5 and see what is a state p which realizes the variational principle.
This measure p shows what configurations are 'important' from the point of
view of the observable 0.

Now there is a couple of notions which needs to be interpreted in the
setting of the behavioral specifications. We may want to know what are
energy, pressure, temperature ? We may want to look for a 'good' potential
energy, so that we see 'interesting' sequences with large probabilities. We
may want to understand what are equilibrium states p and observables q ?
Are we interested at all in the infinite setting ? Should we rather concentrate
in the finite (but large) systems ?
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The easiest case is when one considers as O(x) =-d(x, S), the distance
of the configuration to a given set S C E3 A. In the case of an algorithm -
by this I mean that we are interested in an evolution of finite number of
steps, i.e. finite iterations of the shift - this set S should be (forward) shift
invariant or even a fixed point of the shift. The function q cannot be split into
two parts, describing the energy of the site 0 (due to x0) and the potential
energy of interactions between the site 0 and sites j for j E X. Nevertheless
it describes in a sense how 'far' the actual configuration is from the desired
form. Natural candidate equilibrium measures (states) should have supports
on S (the integral part is then 0) and spread equally on S to maximize the
entropy. If the set S is not forward invariant then the (invariant) measure
cannot be supported only on S. I

On the other hand the 'potential energy' may also describe the preferences
of the observer, e.g. a weighted distance to some disjoint sets of acceptable
'final' configurations.
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